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The parametric resonance of rotating cylindrical shells under periodic axial loading is
investigated. The formulation is based on the dynamic version of Donnell’s equation for
thin rotating cylindrical shells. A modified assumed-mode method is used to reduce the
partial differential equations of motion to a system of coupled second order differential
equations with periodic coefficients of the Mathieu–Hill type. The instability regions are
determined based on the principle of Bolotin’s method. Of special interest here are the
effects of the centrifugal and Coriolis forces on the instability regions which were examined
in detail.
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1. INTRODUCTION

Dynamic studies of rotating cylindrical shells have been of interest ever since Bryan [1],
Di-Taranto and Lessen [2] and Srinivasan and Lauterbach [3] discovered the phenomenon
of travelling modes and the effects of Coriolis forces. Free vibrations of rotating cylindrical
rings and shells has been widely studied in many different forms. Mizoguchi [4] investigated
the case in which a shell is treated as a beam and studied its critical speed. The effect of
boundary conditions on the free vibration of prestressed rotating cylindrical shells has
been studied by Penzes and Kraus [5]. The effects of constant axial pressures and
torques on the natural frequencies of rotating prestressed cylinders were examined by
Padovan [6], while studies on the effect of initial stresses were carried out by Armenakas
and Herrmann [7, 8]. The use of different shell theories in the free vibration analysis of
rotating composite cylindrical shells has been reported by Lam and Loy [9]. At the same
time, great strides have also been made regarding the rotating ring problem by various
authors [10–12].

To the knowledge of the authors, no publication is available in the open literature that
reports the effect of rotation on the dynamic stability of rotating cylindrical shells. The
articles mentioned above concentrated mainly on free vibration analysis. The present
study was undertaken to report the effect of rotation on dynamic stability, as it would shed
light on the effects of centrifugal and Coriolis forces in the prediction of the instability
regions.
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2. FORMULATION

The cylindrical shell under consideration (see Figure 1) is assumed to be a thin, uniform
shell of length L, thickness h, radius R and rotating about the x-axis at constant angular
velocity V. The elastic modulus is denoted by E, mass density by r and Poisson’s ratio
by n. The x-axis is taken along a generator, the circumferential arc length subtends an angle
u, and the z-axis is directed radially inwards. The non-dimensional periodic extensional
axial load per unit length denoted by ha . Donnell’s thin shell theory is used to analyze the
shell. The governing equations of motion of the cylindrical shell are
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where u, v and w are the displacements of a point on the reference surface of the shell,
N	 u is the initial hoop tension due to the centrifugal force

N	 u = rhV2R2 (4)

and

g= rR2(1− n2)/E, k= h2/12R2. (5)

The nondimensional periodic extensional axial load is given by

ha = h0 + hs cos Pt, (6)

where P is the frequency of excitation in radians per unit time and ha , h0 and hs are
non-dimensionalized by

ha =Na (1− v2)/Eh, h0 =N0(1− v2)/Eh, hs =Ns (1− v2)/Eh, (7)

where Na is the axial loading per unit length (Nm−1) with N0 being the constant component
and Ns being the oscillatory component.

Assuming the shell to be simply supported, there exists a solution for the equations of
motion in the form

umn =Amn cos lmx cos (nu+vt), vmn =Bmn sin lmx sin (nu+vt),

wmn =Cmn sin lmx cos (nu+vt), (8–10)

where n represents the number of circumferential waves, m the number of axial half-waves
in the corresponding standing wave pattern and lm =mp/L. v is the natural frequency of
the rotating shell.
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Figure 1. Co-ordinate system of the rotating circular cylindrical shell.

There exist six distinct natural frequencies for every combination of m and n. It has been
concluded by Huang and Hsu [13] that in most engineering applications, the transverse
modes dominate such that the contribution of in-plane modes; i.e., vmnj , j=3, 4, 5, 6 can
be neglected. Thus equations (8)–(10) can be expanded and simplified in terms of two
generalized co-ordinates

umnj = s
2

j=1

s
a

m=1

s
a

n=1

Amnj{pmnj (t) cos nu− qmnj (t) sin nu} cos lmx, (11)

T 1

Unstable regions for the transverse modes of a simply-supported isotropic rotating cylindrical
shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to

extensional loading of h0 =0·1hcr

Mode (1, 1)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

Forward mode Backward mode
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

V� p1 p2 U (×10−3) p1 p2 U (×10−3)

0 1·147165172 1·147165172 0·772328 – – –
0·1v̄0,(1,1) 1·135055631 1·135546954 0·788492 1·148134539 1·148452040 0·788492
0·2v̄0,(1,1) 1·097115252 1·101764719 0·812459 1·149670622 1·152898296 0·812459

Mode (1, 2)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·658453850 0·658453850 1·654853 – – –
0·1v̄0,(1,2) 0·660645770 0·660734758 1·649010 0·664148968 0·664207985 1·649010
0·2v̄0,(1,2) 0·666789969 0·667580332 1·622727 0·680877888 0·681423345 1·622727

Mode (1, 3)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·398573686 0·398573686 3·030464 – – –
0·1v̄0,(1,3) 0·409713576 0·409728301 2·945905 0·410713765 0·410724968 2·945905
0·2v̄0,(1,3) 0·441256764 0·441384513 2·727168 0·445268926 0·445366124 2·727168

Mode (1, 4)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·276508010 0·276508010 4·577005 – – –
0·1v̄0,(1,4) 0·293580177 0·293583747 4·310424 0·293962023 0·293964978 4·310424
0·2v̄0,(1,4) 0·339573021 0·339603495 3·724128 0·341102775 0·341127545 3·724128
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vmnj = s
2

j=1

s
a

m=1

s
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n=1

Bmnj{pmnj (t) sin nu+ qmnj (t) cos nu} sin lmx, (12)

wmnj = s
2

j=1

s
a

m=1

s
a

n=1

Cmnj{pmnj (t) cos nu− qmnj (t) sin nu} sin lmx, (13)

where pmnj (t) and qmnj (t) the two generalized co-ordinates.
Substituting equations (11)–(13) into equations (1)–(3) and multiplying equation (1)

separately by arsi cos lrx cos su and arsi cos lrx sin su, equation (2) separately by
brsi sin lrx sin su and brsi sin lrx cos su and equation (3) separately by sin lrx cos su and
sin lrx sin su, where

amnj =Amnj /Cmnj , bmnj =Bmnj /Cmnj , (14)

and integrating over the surface and making use of the orthogonality condition, one
obtains

M*f� +G*f� + {K*−cos PtQ*}f=0, (15)

T 2

Unstable regions for the transverse modes of a simply-supported isotropic rotating cylindrical
shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to

compressive loading of h0 =−0·1hcr

Mode (1, 1)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

Forward mode Backward mode
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

V� p1 p2 U (×10−3) p1 p2 U (×10−3)

0 1·144069348 1·144069348 0·775349 – – –
0·1v̄0,(1,1) 1·131958865 1·132453476 0·791627 1·145032457 1·145351874 0·791627
0·2v̄0,(1,1) 1·094008455 1·098686908 0·815751 1·146544791 1·149790110 0·815751

Mode (1, 2)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·651795592 0·651795592 1·672259 – – –
0·1v̄0,(1,2) 0·654031013 0·654121038 1·666084 0·657533847 0·657593071 1·666084
0·2v̄0,(1,2) 0·660304704 0·661095357 1·638880 0·674386364 0·674934110 1·638880

Mode (1, 3)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·386237353 0·386237353 3·127144 – – –
0·1v̄0,(1,3) 0·397739203 0·397753934 3·031888 0·398739131 0·398750396 3·031888
0·2v̄0,(1,3) 0·430203220 0·430331023 2·760305 0·434213984 0·434311984 2·760305

Mode (1, 4)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·257468320 0·257468320 4·912519 – – –
0·1v̄0,(1,4) 0·275734659 0·275738229 4·587067 0·276116429 0·276119416 4·587067
0·2v̄0,(1,4) 0·324295407 0·324325911 3·898189 0·325824780 0·325849834 3·898189
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T 3

Unstable regions for the transverse modes of a simply-supported isotropic rotating cylindrical
shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to

extensional loading of h0 =0·2hcr

Mode (1, 1)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

Forward mode Backward mode
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

V� p1 p2 U (×10−3) p1 p2 U (×10−3)

0 1·148708534 1·148708534 1·541357 – – –
0·1v̄0,(1,1) 1·136566352 1·137058133 1·573649 1·149683220 1·150001163 1·573649
0·2v̄0,(1,1) 1·098524061 1·103179847 1·621501 1·151230985 1·154464835 1·621501

Mode (1, 2)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·661757096 0·661757096 3·290644 – – –
0·1v̄0,(1,2) 0·663948603 0·664039002 3·279140 0·667487860 0·667547702 3·279140
0·2v̄0,(1,2) 0·670086295 0·670889278 3·227013 0·684319898 0·684873200 3·227013

Mode (1, 3)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·404600426 0·404600426 5·959703 – – –
0·1v̄0,(1,3) 0·415900308 0·415915727 5·794085 0·416931168 0·416942848 5·794085
0·2v̄0,(1,3) 0·447893739 0·448027657 5·365205 0·452029291 0·452130772 5·365205

Mode (1, 4)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·285551987 0·285551987 8·832163 – – –
0·1v̄0,(1,4) 0·303175834 0·303179503 8·321157 0·303583126 0·303586370 8·321157
0·2v̄0,(1,4) 0·350652264 0·350685936 7·195134 0·352284133 0·352311316 7·195134

where the matrices M*, G*, K* and Q* are given by

M*=$MIJ

0
0

MIJ%, K*=$KIJ

0
0

KIJ%,
G*=$ 0

GIJ

−GIJ

0 %, Q*=$QIJ

0
0

QIJ%, (16, 17)

and f� , f� and f are column vectors defined as

f� =6p̈J

q̈J7, f� =6ṗJ

q̇J7, f=6pJ

qJ7. (18)

The subscripts r, s, i, m, n, j, I and J used in equations (16)–(18) have the following
ranges: i, j=1, 2, r, s, m, n=1, 2, . . . , N and I, J=1, 2, . . . , 2N2.

The matrices MIJ , KIJ , GIJ and QIJ are given as

MIJ =6g(pL/2)(1+ bIbJ + aIaJ ),
0,

if I= J,
if I$ J;7 KIJ =6(pL/2)K*,

0,
if I= J,
if I$ J;7

(19, 20)
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T 4

Unstable regions for the transverse modes of a simply-supported isotropic rotating cylindrical
shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to

compressive loading of h0 =−0·2hcr

Mode (1, 1)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

Forward mode Backward mode
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

V� p1 p2 U (×10−3) p1 p2 U (×10−3)

0 1·142516863 1·142516863 1·553489 – – –
0·1v̄0,(1,1) 1·130372841 1·130871208 1·586185 1·143479049 1·143800824 1·586185
0·2v̄0,(1,1) 1·092310337 1·097024311 1·634667 1·144979108 1·148248363 1·634667

Mode (1, 2)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·648440048 0·648440048 3·360111 – – –
0·1v̄0,(1,2) 0·650721518 0·650811928 3·347305 0·654257951 0·654318216 3·347305
0·2v̄0,(1,2) 0·657118642 0·657922217 3·291470 0·671339596 0·671897545 3·291470

Mode (1, 3)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·379918577 0·379918577 6·344903 – – –
0·1v̄0,(1,3) 0·391964771 0·391980203 6·145655 0·391964771 0·391980203 6·145655
0·2v̄0,(1,3) 0·425847546 0·425981581 5·640463 0·429980207 0·430083365 5·640463

Mode (1, 4)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

0 0·247399372 0·247399372 10·16907 – – –
0·1v̄0,(1,4) 0·267576262 0·267580198 9·409119 0·267983378 0·267986698 9·409119
0·2v̄0,(1,4) 0·320429534 0·320463280 7·864383 0·322060584 0·322088397 7·864383

GIJ =6(pL/2)(2gV)(bI + bJ ),
0,

if I= J,
if I$ J;7 QIJ =6−(pL/2)(R2lmlrhs ),

0,
if I= J,
if I$ J;7

(21, 22)

Figure 2. An unstable region in the Ns /N0-p plane.
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where

K*= aIaJ$(Rlm )2 +
1− n

2
n2 +

N	 u

rh
g

R2 n2%− aIbJ$1+ n

2
Rlmn%− aI$nRlm −

N	 u

rh
g

R
lm%

− bIaJ$1+ n

2
Rlmn+

N	 u

rh
g

R
lmn%+ bIbJ$1− n

2
(Rlm )2 + n2 − gV2%

− bI [−n]− aJ [nRlm ]− bJ$−n−
N	 u

rh
g

R2 n%
+ $k((Rlm )2 + n2)2 +1+

N	 u

rh
g

R2 n2 − gV2 + h0(Rlm )2%. (23)

3. STABILITY ANALYSIS

Equation (15) is in the form of a second order differential equation with periodic
coefficients of the Mathieu–Hill type. The regions of unstable solutions are separated by
periodic solutions having period T and 2T with T=2p/P. The solutions with period 2T
are of greater practical importance as the widths of these unstable regions are usually larger
than those associated with solutions having period T. As a first approximation, the
periodic solutions with period 2T can be sought in the form

f= a sin (Pt/2)+ b cos (Pt/2), (24)

where a and b are arbitrary vectors.

Figure 3. Unstable regions for the transverse mode of mode (1, 1) of a simply-supported isotropic rotating
cylindrical shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to extensional loading
of h0 =0·1hcr : (a) V=0; (b) V=0·1v̄0(1,1); (c) V� =0·2v̄0(1,1).
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Figure 4. As Figure 3 but for mode (1, 2): (a) V� =0; (b) V� =0·1v̄0(1,2); (c) V� =0·2v̄0(1, 2).

Figure 5. As Figure 3 but for mode (1, 3): (a) V� =0; (b) V� =0·1v̄0(1,3); (c) V� =0·2v̄0(1, 3).
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Substituting equation (26) into equation (15) and equating the coefficients of the
sin (Pt/2) and cos (Pt/2) terms, a set of linear homogeneous algebraic equations in terms
of a and b can be obtained. The conditions for non-trivial solutions are given by

det $0K*− 1
2Q*− 1

4P
2M*

1
2PVG*

1
2PVG*

K*+ 1
2Q*− 1

4P
2M*1%=0. (25)

Equation (27) is the equation of boundary frequencies and can be used to calculate the
boundaries of the instability regions.

4. NUMERICAL RESULTS AND DISCUSSION

The dynamic instability regions for the first order parametric resonances of a rotating
cylindrical shell under combined static and periodic axial loads are presented in Tables 1
to 4 and Figures 1 to 18. The non-dimensional excitation frequency parameter p is defined
as

p=RPzr(1− n2)/E . (26)

Each unstable region is bounded by two lines which may or may not originate from a
common point from the p-axis. The two curves appear at first glance to be straight lines
but are in fact two very slight ‘‘outward’’ curving plots. For the sake of tabular
presentation, each unstable region is defined by its two originating points, p1 and p2, from
the p-axis with hs =0. If the two curves originate from the same point, as is the case for
non-rotating shell, then p1 = p2. The angle subtended, U, is also introduced. It is calculated
based on the arctangent of the right-angled triangle, abc, as shown in Figure 2. This angle
gives an accurate measurement of the slope of the boundary of the unstable region as
calculations done with the smaller similar triangle, ab'c' (see Figure 2), are within 0·1%.

Figure 6. As Figure 3 but for mode (1, 4): (a) V� =0; (b) V� =0·1v̄0(1,4); (c) V� =0·2v̄0(1, 4).
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Figure 7. Unstable regions for the transverse mode (1, 1) of a simply-supported isotropic rotating cylindrical
shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to compressive loading of
h0 =−0·1hcr : (a) V� =0; (b) V� =0·1v̄0(1,1); (c) V� =0·2v̄0(1,1).

The results presented in this study are for a simply-supported isotropic rotating
cylindrical shell of n=0·3 and geometric properties L/R=2 and R/h=100. The modes
of interest here are the transverse modes and the two higher axial and circumferential
modes are neglected in the analysis. Results presented are for different rotational speeds

Figure 8. As Figure 7 but for mode (1, 2): (a) V� =0; (b) V� =0·1v̄0(1,2); (c) V� =0·2v̄0(1,2).
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Figure 9. As Figure 7 but for mode (1, 3): (a) V� =0; (b) V� =0·1v̄0(1,3); (c) V� =0·2v̄0(1,3).

for the transverse modes of modes (1, 1), (1, 2), (1, 3) and (1, 4) respectively. The results
presented here exclude those for circumferential wave number nq 4 due to the limitation
of Donnell’s equations to the higher circumferential modes for short to moderate length
cylindrical shells.

Figure 10. As Figure 7 but for mode (1, 4): (a) V� =0; (b) V� =0·1v̄0(1,4); (c) V� =0·2v̄0(1,4).
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Figure 11. Unstable regions for the transverse mode of mode (1, 1) of a simply-supported isotropic rotating
cylindrical shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to extensional loading
of h0 =0·2hcr : (a) V=0; (b) V=0·1v̄0(1,1); (c) V=0·2v0(1,1).

The values of h0 are chosen to be in terms of hcr which is the critical buckling load of
a simly-supported circular cylindrical shell subjected to static compressive axial load and
is given by

hcr =Ncr ([1− n2]/Eh), (27)

where Ncr as given by Timoshenko and Gere [14] is

Ncr =Eh2/[3(1− n2)]1/2R (28)

and if n is taken to be 0·3, then

hcr =0·5507(h/R). (29)

Table 1 gives the tabular representations for Figures 3–6, which contains results for
tensile loading of h0 =0·1hcr . Corresponding results for compressive loading of
h0 =−0·1hcr are given in Table 2 and Figures 7–10. The corresponding results for increased
loading magnitudes are given in Table 3 and Figures 11–14 for tensile loading for
h0 =0·2hcr and in Table 4 and Figures 15–18 for compressive loading of h0 =−0·2hcr . The
tables are provided to give quantitative values to the unstable regions so that more accurate
comparisons can be made between the different cases considered. Also they may be used
as a source for comparison in future works by other authors for more complicated related
problems.

The non-dimensional rotational speeds, V� , used for each mode are in terms of the
dimensionless natural frequencies of the non-rotating shell, v̄0, of that particular mode and
under corresponding tensile loading. In the present case, due to the constraint of space,
the two speeds considered are V� =0·1v̄0, 0·2v̄0. These speeds were chosen as results
obtained for the different transverse modes using these two speeds provided clear
observations for the onset of the bifurcations of the instability regions which occur at lower
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Figure 12. As Figure 11 but for mode (1, 2): (a) V� =0; (b) V� =0·1v̄0(1,2); (c) V� =0·2v̄0(1,2).

rotational speeds. Clear observations of the Coriolis effects which are larger for higher
rotational speeds were also achieved using these two speeds.

It is noted from the results presented that the introduction of rotation generates two
unstable regions for each transverse mode. This is expected as it is well known that the
presence of rotation will cause the natural frequencies to bifurcate due to the Coriolis

Figure 13. As Figure 11 but for mode (1, 3): (a) V� =0; (b) V� =0·1v̄0(1,3); (c) V� =0·2v̄0(1,3).
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Figure 14. As Figure 11 but for mode (1, 4): (a) V� =0; (b) V� =0·1v̄0(1,4); (c) V� =0·2v̄0(1,4).

effects, one in the forward travelling mode and the other in the backward travelling mode.
Thus the lower unstable region represents the forward mode and the higher unstable region
represents the backward mode.

Figure 15. Unstable regions for the transverse mode of mode (1, 1) of a simply-supported isotropic rotating
cylindrical shell of n=0·3 and geometric properties L/R=2 and R/h=100 and subjected to compressive loading
of h0 =−0·2hcr : (a) V� =0; (b) V=0·1v̄0(1,1); (c) V� =0·2v̄0(1,1).
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Figure 16. As Figure 15 but for mode (1, 2): (a) V� =0; (b) V� =0·1v̄0(1,2); (c) V� =0·2v̄0(1,2).

It is also observed that as the rotational speeds increase, the boundaries of the each
unstable region shift away from each other and the region broadens. In some of the figures,
this phenomena is not immediately apparent as the boundaries of the unstable regions for
these cases have just begun to shift away from each other. However, the tabular results
clearly show the presence of this phenomena. As the Coriolis terms are proportional to
the rotational speed, it can be concluded that the Coriolis effects destabilizes the rotating
shell causing the widths of the unstable regions to increase. It can also be concluded for
the rotating shell configuration used in the present study, the lower modes of (1, 1) and
(1, 2) are much more sensitive to the Coriolis effects than the higher modes of (1, 3) and
(1, 4). It is also interesting to note from the results that for each respective mode, the shift
of the boundaries away from each other is more pronounced in the forward wave than
in the backward wave.

In some of the figures, it is observed that there is some overlapping between the unstable
regions of the forward and backward waves especially at the initial bifurcation. The
positive eigenvalues of the boundaries of the unstable regions corresponding to the
backward waves are due to a positive rotation, Vq 0, while the negative eigenvalues of
the boundaries of the unstable regions corresponding to the backward waves are due to
a negative rotation, VQ 0. In the case of a stationary shell, these two eigenvalues are
identical and the vibratory motion is a standing wave motion. However, if the shell begins
to rotate, this standing wave motion is transformed and depending on the direction of
rotation, backward or forward waves will emerge. Thus the overlapping should not be
viewed as a superposing of two instabilities as they both cannot coexist at the same time
for a particular rotating shell.

From the results, one may note that as the magnitude of the tensile loading is increased,
the unstable regions shift to the right having higher points of origins. The converse is true
when the magnitude of the compressive loading is increased. This can be expected in line
with the argument that the natural frequencies of a shell increases as it is axially stretched



0

p

N
s/

N
o

0.4

0.2

0.38 0.40

(c)

(b)

(a)

0.42

0.4

0.2

0.4

0.2

0

0

0

p

N
s/

N
o

0.4

0.2

0.25 0.27

(c)

(b)

(a)

0.29 0.31 0.33

0

0.4

0.2

0

0.4

0.2

. .   .528

Figure 17. As Figure 15 but for mode (1, 3): (a) V� =0; (b) V� =0·1v̄0(1,3); (c) V� =0·2v̄0(1,3).

and decreases as it is compressed. The size of the unstable regions in this study is thus
dependent upon two variables, firstly the p2 − p1 difference and secondly the subtended
angle U. From the results, it is observed that as the magnitude of the axial loading is
increased for both tensile and compressive cases, the sizes of the unstable regions also
increase. It is also worthy to note that for tensile and compressive loadings of the same

Figure 18. As Figure 15 but for mode (1, 4): (a) V� =0; (b) V� =0·1v̄0(1,4); (c) V� =0·2v̄0(1,4).
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magnitude, the sizes of the unstable regions associated with the compressive loading is
generally larger. Another interesting observation is that for any particular mode, the
subtended angle U is the same for both its forward and backward wave.

5. CONCLUSIONS

The dynamic stability of simply-supported, isotropic rotating cylindrical shells under
combined static and periodic axial forces was investigated. The Coriolis effects caused the
generation of two unstable regions for each transverse mode. The Coriolis effects also
caused the boundaries of the unstable regions to shift away from each other thus causing
the sizes of the unstable regions to increase. The sizes of the unstables were also found
to be generally larger for compressive loadings than for tensile loadings.

Extensions of the present study to cylindrical shells accounting for transverse shear
deformation and to laminated composite cylindrical shells (see Reddy [15, 16]) with or
without shear deformation awaits attention.
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